头孢类抗生素生产废水的处理
头孢类抗生素生产废水成分复杂、生物毒性大、含有多种高浓度生物抑制物质。目前国内外处理这类废水主要采用好氧、厌氧或厌氧+ 好氧的生物处理方法。由于废水中含有大量的生物毒性物质, 如直接采用上述的生物处理法, 微生物难以培养和生存,处理难度较大〔1〕, 所以必须进行预处理, 以达到减少生物毒性物质干扰的目的。
我国从20 世纪80年代就(就字为避免系统拦截所加,原文没有)开始这一领域的研究〔2 〕, 已有不少文献报道。特别是近年来, 进展较快, 在印染废水、电镀废水、制药废水、石油化工废水、含砷及含氰废水治理方面相继有研究报道, 有的已投入实际运行。一般的铁屑法是将废铸铁屑与惰性电极放在一起, 形成铁- 惰性电极原电池, 通过铁屑腐蚀发生的一系列化学反应来达到处理废水的目的, 也叫内电解法或者腐蚀电池法, 一般由活性炭〔3〕、烟道灰〔4〕、瓦斯灰〔5〕作为惰性电极。该方法存在处理速度慢, 活性炭、烟道灰和瓦斯灰难于与水分离, 铁屑容易板结等不足, 阻碍了其工程规模应用的进度。为了解决上述铁屑法的不足, 笔者首次尝试提出了铁- 氧电池法, 即将废铸铁屑放入盛有抗生素废水的反应器中, 从反应器下端用空气泵鼓入空气, 其中的氧气与铁屑形成了Fe - O 腐蚀电池,从而加速铁的腐蚀速度, 以求在常规条件下满足抗生素废水 处理的要求。
实验方法 原理
铸铁中的碳化铁为极小的颗粒, 分散在铁内, 因此, 当铸铁浸入水中时, 就构成了成千上万细小的微电池, 纯铁为阳极, 碳化铁为阴极, 发生电池反应, 在酸性介质和充氧的情况下铁最易腐蚀, 即曝气加速了铁的腐蚀。电极反应生成的产物具有较高的化学活性。在酸性溶液中, 电极反应所产生的大量新生态的Fe2+提高了Fe2+和抗生素废水中的许多组分发生氧化还原作用的速度, 使大分子物质更快地分解为小分子的中间体, 使某些难生化降解的化学物质转变成容易生化处理的物质, 提高了废水的可生化性〔1〕。
由于Fe2+的不断生成能有效地克服阳极的极化作用, 从而促进铁的电化学腐蚀, 使大量的Fe2+进入溶液。随着pH 的升高, 溶液中Fe2+形成Fe(OH) 2 和Fe(OH) 3 胶体, 并进一步水解成铁的单核络合物沉淀〔6〕。这种络合物具有较高的吸附絮凝活性, 能有效吸附抗生素废水中的有机物质, 另外, 铁屑层具有良好的过滤作用, 反应生成的胶体不但可以强化铁屑层的过滤吸附作用, 而且产生新的胶粒, 其中心胶核是许多Fe (OH) 3 聚合而成的有巨大比表面积的不溶性粒子, 这就使它易于吸附、裹挟大量的有害电解质, 并可和各种金属发生共沉淀作用, 从而达到去除的目的。
结果与讨论
实验结果
影响COD去除率的各因素的顺序依次为: 曝气时间> 铁屑质量> 废水体积>pH。即曝气时间和铁屑质量是主要因素, 对处理结果影响较大, pH 的影响最小。又由表1 的极差分析可知, pH 越低, COD 去除率越高。考虑到原水是酸性废水( pH 2 ~4) , 因此在以后的试验中可不调节pH,直接注入原废水。
结论
铁- 氧电池法和一般铁屑法相比较, 铁屑腐蚀加快, 微电解反应速率提高, 不需惰性电极且可防止铁屑结块、钝化。在处理抗生素废水时, 处理时间对出水水质影响最大, 其次是铁屑质量、废水体积, pH影响较小。最佳工艺条件为: 废水体积为60 mL 时,铁屑质量100 g、曝气时间90 min、pH 2 ~4。铁- 氧电池法既可中和废水的酸性, 又可还原有机污染物, 并通过絮凝沉淀等作用去除了部分有机物, 减小了有毒物质的浓度, 显著提高了废水的可生化性, 有利于进一步的生化处理, 是十分有效的预处理手段。
- 上一篇:生化处理法对焦化废水的处理
- 下一篇:聚合氯化铝用于处理高浓度有机废水